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This unique exposition of Kurt Gödel’s stunning incompleteness 
theorems for a general audience manages to do what no other has 
accomplished: explain clearly and thoroughly just what the theorems 
really say and imply and correct their diverse misapplications to 
philosophy, psychology, physics, theology, post-modernist criticism 
and what have you.

Solomon Feferman



Introduction



Gödel’s incompleteness theorem is probably the 
one that has arose more interest among non-
mathematicians, it was published in 1931 by 
Gödel, and strengthened in 1936 by Rosser

That’s a result of  logic about the consistency and 
completeness of  formal systems, those terms have a 
precise technical meaning and so care is needed 
when interpreting the theorem outside logic



The implications of  this theorem are often 
overstated, for example: “turned not only 
mathematics, but also the whole world of  
science on its head”

Gödel’s incompleteness theorem brought no 
revolution whatsoever to mathematics, in 
general it plays no role in the work of  
working mathematicians

However, the theorem raises a number of  
philosophical questions concerning the 
nature of  logic and mathematics



The First Incompleteness 
Theorem



Terminology

Given a formal language L, a formal system S in L is 
a set of  axioms and syntactical rules of  reasoning (also 
called inference rules) expressed in L.

A theorem of  S is any statement T of  S which is 
obtainable by a series of  applications of  the 
inference rules of  S starting from the axioms of  S, 
such a sequence is called a proof  of  T in S

Those concepts are purely symbolic, nothing is said 
about any meaning or soundness



A formal system S is said to be consistent if  it has 
no sentence A such that A and ¬A are both 
theorems of  S

A sentence A of  S is said to be undecidable in S if  
neither A nor ¬A are theorems of  S

A formal system is said to be complete if  it has no 
undecidable sentences, otherwise it is incomplete

If  A is a sentence of  S, we denote by S+A the 
formal system obtained by adding A as a new 
axiom to the ones of  S, and with the same rules



By ex falso quodlibet an inconsistent theory has no 
undecidable statements, everything is a theorem

A is probable in S iff  S+¬A is inconsistent

A is undecidable in S iff  both S+A and S+¬A are 
consistent

Observations



First Incompleteness Theorem

First incompleteness theorem (Gödel-
Rosser). Any consistent formal system S within 
which a certain amount of  elementary arithmetic 
can be carried out is incomplete with regard to 
statements of  elementary arithmetic



Goldbach-like Statements

Goldbach’s conjecture states that every even 
number greater than 2 is the sum of  two primes, 
it is unknown whether it holds

For any given even number greater than 2 we can 
check that property applying an algorithm, that’s 
a computable property

We call Goldbach-like those statements of  the form 
“Every natural number has property P”, where P 
is a computable property



Goldbach-like statements have an important 
characteristic, if  they are false they are 
disprovable because there’s an algorithm that 
finds a counterexample

However,  we do not know in advance which 
mathematical methods will give a proof  of  a 
true Goldbach-like statement, in case there is 
one



The Twin Prime Conjecture

The Twin Prime conjecture states there are 
infinitely many primes p such that p+2 is also 
prime, it is unknown whether it holds

That is not a Goldbach-like statement: given a 
natural n the procedure that systematically looks 
for pairs p, p+2 with n ≤ p will not terminate if  
there’s none



An Important Property

If  a Goldbach-like sentence in a consistent system 
S incorporating some basic arithmetic is provable 
or undecidable in S then it is necessarily true, for 
if  it was false a proof  of  its negation would exist, 
and so S wouldn’t be consistent

In the traditional proof  of  the incompleteness 
theorem a Goldbach-like and undecidable 
sentence is shown



Hilbert’s non ignorabimus

Gödel’s Incompleteness theorem does not refute 
Hilbert’s view that mathematicians can find 
solutions to any mathematical problem by means 
of  pure reason

Instead, it establishes that Hilbert’s optimism 
cannot be justified by exhibiting any single formal 
system within which all mathematical problems 
are solvable



Unprovable Truths

It is often said that Gödel demonstrated that there 
a truths that cannot be proved. This is incorrect, 
“provability” is always relative to a formal system

If  an arithmetic sentence was undecidable in ZFC 
we still could select a stronger set of  axioms valid 
as foundations and try to prove it there

That is not to say that such a switch would be 
without controversy



Complete Formal Systems

The incompleteness theorem does not imply that 
every consistent formal system is incomplete

The theory of  the real numbers is complete, and 
it comprises the arithmetic of  real numbers

Although the natural numbers are a subset of  the 
real numbers they are not definable within the 
theory of  real numbers, and so the premise of  the 
incompleteness theorem do not hold



Applicability

The incompleteness theorem guarantees the 
existence of  undecidable arithmetical statements in 
certain kinds of  formal systems

It says nothing about the existence of  undecidable 
non-arithmetical or non-mathematical statements

The incompleteness theorem does not apply in 
contexts where there’s no formal system like, say, 
the Bible, or the Constitution, analogies and 
metaphors rarely suffice



Mind vs. Computer

Some people speculate that the incompleteness 
theorem implies the mind surpasses the machine 
because it can see the truth of  formulas the 
machine won’t be able to demonstrate

This argument is invalid, in general we have no 
idea about whether the Gödel sentence of  a 
system is true, what we know is that it is true iff  
the system is consistent, and this much is provable 
in the system itself



Some people question the feasibility of  a Theory 
of  Everything in physics because of  the theorem

A TOE would probably be a formal system where 
Gödel’s theorem applies, and in such case the 
theorem tells us there would be an incompleteness 
in its arithmetical component, but whether or not 
the basic equations of  physics are complete 
considered as a description of  the physical world, 
and what completeness might mean in such a 
case, is not something that the incompleteness 
theorem tells us anything about

Incompleteness and the TOE



Truth

“Truth” is not a mathematical concept, and so it 
is normally avoided by mathematicians, a proof  in 
logic is a syntactic derivation and has nothing to 
do with the “truth” or “falsehood” of  a sentence

When a mathematician says that the twin prime 
conjecture may be “true” he means that there 
may be infinitely many primes p such that p+2 is 
also prime, no more no less



There’s nothing that supports in that arithmetical 
statements like the twin prime conjecture could be 
actually undecidable in ZFC, in practice there’s 
no need to feel at all worried by the possibility of  
natural mathematical problem being unsolvable

Some problems in Set Theory are known to be 
unsolvable in ZFC, like Cantor’s continuum 
hypothesis

ZFC



Some Later Developments

There has been considerable work seeking 
undecidable statements close to “ordinary 
mathematics”

In arithmetic the first result of  this kind was the 
Paris-Harrington theorem (1976) which establishes the 
unprovability of  a combinatorial statement

Gödel himself  suggested a way to extend the 
arithmetical component of  ZFC with axioms of  
infinity that imply some undecidable statements



Another line of  development—followed by 
Gregory Chaitin in the 1960s—relates 
incompleteness to Kolmogorov complexity



The Second 
Incompleteness Theorem



Second Incompleteness Theorem

Second incompleteness theorem (Gödel). 
For any consistent formal system S within which a 
certain amount of  elementary arithmetic can be 
carried out, the consistency of  S cannot be proved 
in S itself



Observations

The “certain amount of  arithmetic” in the second 
theorem is not the same we ask for in the first one

“S is consistent” can be expressed in said systems 
thanks to a technique called arithmetization of  syntax 
that uses a way of  representing syntactical objects 
such as sentences and proofs as numbers called 
Gödel numbering



The consistency of  such systems is sometimes 
proved in other systems, for instance Gentzen 
showed that PA is consistent using a theory T that 
extends PA, but that yields an infinite regress since 
we need now to investigate the consistency of  T



Some people think the second incompleteness 
theorem raises doubts about the consistency of  
formal systems used in mathematics, we can’t 
prove it in an absolute manner, so there’s a logical 
possibility of  mathematics being inconsistent

From a metamathematical view, though, it would 
be of  little use to prove the consistency of  ZFC 
within ZFC, for if  we doubt about its consistency 
in the first place how can we trust the theorem?

Doubts



In fact, if  ZFC was inconsistent it would indeed 
proof  its consistency, since every sentence is a 
theorem in an inconsistent system, so even if  ZFC 
could prove its own consistency little would follow 
as far as our confidence in the system go

The second incompleteness is mainly of  interest 
to logicians, whose object of  study are logics, the 
same way an algebraist studies, say, rings and is 
interested in their properties



No one doubts of  the consistency of  the axioms 
on which ordinary mathematics are based, and 
therefore of  the validity of  the theorems such as 
that there are infinitely many primes

That belief  comes from consensus, common 
sense, experience, tradition, etc., not from logic

So, Are Mathematics At Risk?



It is often said that the second incompleteness 
theorem demolished Hilbert’s program, whose 
goal was to prove the consistency of  mathematics 
by finitistic reasoning

This was not the view of  Gödel himself. Rather, 
the theorem showed that the means by which 
acceptable consistency proofs could be carried out 
had to be extended and Gödel gave one way in 
his “Dialectica interpretation,” published in 1958

Hilbert’s Program



Computability, Formal 
Systems and 

Incompleteness



Alternative Proofs

Over time logicians have developed techniques to 
demonstrate both incompleteness theorems using 
other approaches than the original proofs



Strings

By a string is meant any finite sequence of  symbols

The length of  a string is defined to be the number 
of  occurrences of  its symbols

For instance numerals in decimal positional 
notation are strings of  the alphabet of  digits



Computably Enumerable Sets

Numerals can be generated in lexicographic order 
by a computer program, such a set of  strings is 
called computably enumerable

In that definition we allow repetitions, and if  the 
set is finite we allow the program not to halt, as 
long as it eventually exhausts the set of  strings

Turing machines or some other model of  
computation are used to formalize these concepts, 
but we informal descriptions will do for us



Computably Decidable Sets

There is an algorithm that decides whether a 
given string will ever appear in the enumeration of  
numerals mentioned in the previous slide—“13” 
does, “007” does not, neither does “foo”—by 
definition this property makes the set of  numerals 
computable, or computably decidable, or just decidable

A set that is not decidable is said to be (computably) 
undecidable



We’ve Got Two “Decidable”s

We have by now a definition of  decidable that 
applies to sentences of  formal systems, an another 
one that applies to sets of  strings

They are different, but there’s a connection 
between them that we will see in this section



Enumerability & Decidability

Every computably decidable set is computably 
enumerable

A set E is computably decidable iff  both E and its 
complement are computably enumerable

Undecidability theorem (Turing, Church). 
There are computably enumerable sets which are 
not computably decidable



Formal Systems and Decidability

The set of  sentences of  the language of  a formal 
system is assumed to be a decidable set of  strings

Axioms and inference rules need to be defined in 
such a way that the set of  theorems is computably 
enumerable

If  the set of  theorems is indeed decidable the 
formal system is said to be decidable



A complete formal system is always decidable, for 
either it is inconsistent, or else we determine if  a 
sentence A is a theorem enumerating its theorems 
until either A or ¬A is found

There are also theories which are decidable and 
incomplete



There is a proof  of  the incompleteness theorem 
that does not use any arithmetical formalization of 
self-referential sentences (so they are not essential)

It is based on computability theory and uses the 
Matiyasevich-Robinson-Davis-Putman theorem

The proof  shows that there are infinitely many 
equations D(x1, ..., xn) = 0 for which is undecidable 
in S whether or not they have solution

Computability & Incompleteness



The Completeness 
Theorem



The Completeness Theorem

Gödel himself  proved that first-order theories are 
complete, in that theorem “complete” has another 
meaning though

A model of  a first-order system is a mathematical 
structure that satisfies its axioms given a certain 
interpretation

Given a first-order system S, the completeness 
theorem establishes that a sentence of  S is a 
theorem of  S iff  it holds in all models of  S



Nonstandard Models

Sometimes it is said that the first incompleteness 
theorem implies that in any theory T of  a certain 
degree of  complexity there are sentences that are 
true in all models of  T yet undecidable in T

The first incompleteness theorem neither states 
nor implies such a thing, on the contrary, the 
completeness theorem implies that if  a sentence is 
true in all models of  a first-order theory T (such 
as PA or ZFC) then it is decidable in T, for it is 
indeed a theorem of  T


